【G検定まとめ】要点整理&当日用カンペの項目別詳解ページです。

詳細な知識や実装は試験には必ずしも必須ではありませんが、試験対策として理解を深めたい方はぜひ最後までご覧ください。

G検定まとめはこちら

正則化

正則化は、機械学習モデルの過学習を防ぐために使用されます。過学習とは、モデルが訓練データに対して過度に最適化されてしまう現象で、その結果として新しい、未知のデータに対する汎化性能が低下することを指します​​​​。

正則化の基本的なアイディアは、モデルの複雑さにペナルティを課すことにより、過度に複雑なモデルを回避することです。これにより、モデルは訓練データに対して過度に適応することなく、未知のデータに対しても良い予測性能を保つことが可能となります。

正則化の手法

  1. L1 正則化:この方法では、一部のモデルパラメータをゼロにすることで正則化を行います。これにより、無関係または重要でない特徴量に関連するパラメータを除去し、モデルを単純化することができます。L1 正則化を適用した回帰モデルはラッソ回帰と呼ばれます​​。
  2. L2 正則化:こちらはパラメータの大きさに応じてそれらをゼロに近づけることで正則化を行います。この方法は、モデルの全ての特徴量が出力に何らかの寄与をするようにしますが、その影響度を小さく抑えます。L2 正則化を適用した回帰モデルはリッジ回帰と呼ばれます​​。

これらの正則化技術は、モデルが訓練データに過剰に適応することなく、より汎化性の高い予測を行えるようにするために重要です。さらに、L1とL2正則化を組み合わせたElastic Netという手法も存在し、これはラッソ回帰とリッジ回帰の両方の特性を持つことを意識しておくと良いでしょう​​。

L1正則化

L1正則化は、機械学習モデルの過学習を抑制する手法の一つです。過学習とは、モデルが訓練データに過剰に適応してしまうことで、新しいデータに対する予測精度が低下する現象を指します​​。L1正則化では、モデルの損失関数にパラメータの絶対値の和を加えることで、パラメータの大きさを制限します。これにより、モデルが複雑になりすぎるのを防ぎ、過学習を抑制することができます​​​​。

L1正則化の特徴として、重要でない説明変数の係数(重み)をゼロにすることが挙げられます。この性質により、不要な説明変数を除去する「次元圧縮」が行われます。その結果、モデルの解釈が容易になるとともに、必要な変数だけがモデルに利用されるようになります。ただし、一般的にL2正則化に比べ予測性能は劣る傾向があります​​。

L2正則化

L2正則化は、損失関数にパラメータの二乗和をペナルティとして加える手法です​​​​​​​​​​。

具体的には、L2正則化を適用した機械学習モデルは、損失関数とパラメータの二乗和の和を最小にするパラメータを学習します。この二乗和は、パラメータが大きくなりすぎることを防ぐためのペナルティ項として機能します。数式で表すと、損失関数を()、正則化の強度を調整するパラメータをとした場合、L2正則化は以下の式で表されます:

L2正則化の利点は、過学習を抑制し、モデルの予測精度を高めることにあります。特に、L2正則化を適用したモデルはパラメータが滑らかで表現力に優れているとされます。L1正則化と比較して、L2正則化は予測性能が高いと一般に言われています​​​​。

重要なのは、L2正則化の強度を調整するパラメータλの設定です。この値が大きいほど、ペナルティの影響が強まり、パラメータの値を小さく保つことが優先されます。ただし、この値を過度に大きくすると、モデルの表現力が損なわれ、結果的にバイアスが大きくなる可能性があります。したがって、λの値は目的に応じて適切に設定する必要があります​​。

L2正則化を回帰分析に適用したものはリッジ回帰と呼ばれ、L1正則化を適用したものはラッソ回帰と呼ばれます。また、L1正則化とL2正則化の両方を適用した手法はエラスティックネットとして知られています​​​​。

min⁡�()+�2∑�=1��2

G検定学習法

最後までご覧いただきありがとうございました。

当サイトではG検定に役立つ情報をまとめています。

ぜひご覧ください。

本サイトの活用方法

【G検定2024まとめ】理解度確認問題集【直前対策】

問題 すべての問題の解答が終わると答えを見ることができます。 解説動画 関連記事【G検定まとめ2024】YouTube動画リスト(問題編) 2024年5月4日 【G検定まとめ2024】YouTube動画リスト( […]

【G検定まとめ2024】YouTube動画リスト(問題編)

講義編はこちら 関連記事【G検定2024まとめ】理解度確認問題集【直前対策】 2024年5月28日 【G検定まとめ2024】YouTube動画リスト(講義編) 2024年1月24日 【G検定まとめ20 […]

【G検定まとめ2024】YouTube動画リスト(講義編)

問題編はこちら 関連記事【G検定2024まとめ】理解度確認問題集【直前対策】 2024年5月28日 【G検定まとめ2024】YouTube動画リスト(問題編) 2024年5月4日 【G検定まとめ202 […]

【G検定まとめ2024】試験当日も使える! 要点整理&試験対策カンペ

G検定の要点をシラバスから抜粋してまとめました。これから学習する方も、復習したい方にもお使いいただけます。試験当日用のG検定のカンニングペーパー参考としてもお役立てください。試験結果を保証するものではありませんので、試験 […]

【G検定2023まとめ】理解度確認&問題集まとめ【直前対策】

下記ページに移動しました。 【G検定2024まとめ】理解度確認問題集【直前対策】 関連記事【G検定2024まとめ】理解度確認問題集【直前対策】 2024年5月28日 【G検定まとめ2024】YouTube動画リ […]

【G検定2023】G検定の概要と試験のポイント

このシリーズではG検定の要点を項目ごとにまとめています。 今回の記事では「G検定の概要と試験のポイント」について紹介します。 試験の概要  G検定(公式名:ジェネラリスト検定)は、JDLA:Japan Deep Lear […]

参考書籍

教科書として使用する書籍

体系的に知識を整理することができます。

まずは、この1冊を読んでG検定の学習を進めましょう。

検索機能が使用できるので、Kindle版が特におすすめです。

②問題集として使用する書籍

ある程度学習が進んだら、本番を意識して問題集に取り組みましょう。

本番の試験環境を意識して、このページ「要点整理&当日用カンペ」を使用しながら解答してみましょう。